FTU设备健康评分系统技术文档

1. 系统概述

1.1 背景

配网终端(FTU)作为配电网智能化的重要组成部分,其健康状态直接影响电网的安全稳定运行。本系统基于配网终端的遥测、 遥信数据,建立了一套科学、合理的健康评分体系,为南网配网设备的智能运维提供技术支撑。

1.2 目标

- 实现FTU设备健康状态的量化评估
- 提供设备异常的早期预警
- 指导设备的预防性维护
- 提升配网运维的智能化水平

1.3 评分范围与等级

评分采用百分制(0-100分),分为5个健康等级:

等级	分数区间	状态描述	处理建议
优秀	90-100	设备状态良好	正常运维
良好	80-89	设备基本正常,有轻微异常	关注监控
一般	70-79	设备有明显问题,需关注	加强巡检
较差	60-69	设备故障较多,需维护	安排检修
很差	0-59	设备严重故障,需紧急处理	紧急抢修

2. 评分体系架构

2.1 评分维度

本系统采用五个维度的综合评分方法:

总评分 = 遥测数据健康度(35%) + 运行状态评分(25%) + 故障频率评分(20%) + 数据质量评分(10%) + 趋势分析评分(10%)

2.2 各维度权重设计依据

维度	权重	设计依据
遥测数据健康度	35%	电气参数是设备状态的直接反映,权重最高
运行状态评分	25%	开关状态和保护动作直接关系设备安全
故障频率评分	20%	历史故障频率反映设备可靠性趋势
数据质量评分	10%	数据质量影响评分的准确性

维度	权重	设计依据
趋势分析评分	10%	变化趋势预示未来状态走向

3. 详细评分算法

3.1 遥测数据健康度评分(35%)

3.1.1 评分对象

监测13项遥测参数:

电流参数: IO(零序电流)、IA、IB、IC电压参数: UA、UB、UC、UAB、UBC、UCA

• 功率参数: P(有功功率)、Q(无功功率)、COS(功率因数)

3.1.2 评分逻辑

基于统计学方法建立的参数阈值体系:

阈值分类

normal_range: [lower_threshold, upper_threshold] # 正常范围
extreme_range: [extreme_low, extreme_high] # 极值范围
statistical base: mean ± std # 统计基准

3.1.3 扣分规则

极值违规:单次扣分3分,累计超过总读数20%扣30分阈值违规:单次扣分1分,累计超过总读数10%扣20分

• 轻微异常:累计超过总读数5%扣10分

3.1.4 特殊参数处理

零序电流10特殊阈值

IO > 5.0A # 严重故障(可能接地)

 IO > 3.0A
 # 昇常告警

 IO > 1.0A
 # 关注监测

3.2 运行状态评分(25%)

3.2.1 遥信参数分析

基于28项遥信数据进行状态评估:

遥信类别	关键参数	扣分权重
故障类	开关事故总、终端故障告警	10-15分
保护动作类	过流 / / 段动作、零序动作	4-8分
告警类	过负荷告警、开关未储能	5-6分
电源类	终端电源交流失压	15分

3.2.2 评分算法

运行状态评分 = 基础分90分 - 2(故障扣分)

3.3 故障频率评分(20%)

3.3.1 故障识别标准

通过遥测数据异常模式识别潜在故障:

-- 零序电流异常统计

SELECT COUNT(CASE WHEN i0 current > 3.0 THEN 1 END) as i0 fault count

-- 电流极值异常统计

SELECT COUNT(CASE WHEN ia current > 25.0 OR ib current > 25.0 OR ic current > 25.0 THEN 1 END

-- 电压异常统计

SELECT COUNT(CASE WHEN ua_voltage < 4.0 OR ub_voltage < 4.0 OR uc_voltage < 4.0 THEN 1 END) a

3.3.2 扣分机制

• 零序异常率 > 5%: 扣20分; > 2%: 扣10分

电流极值率 > 1%: 扣15分电压异常率 > 2%: 扣25分

3.4 数据质量评分(10%)

3.4.1 质量指标

• 数据完整性:实际数据量/期望数据量

• 数据一致性:检测异常相同值(如三相电流完全相同)

• 数据时效性:数据上报的及时性

3.4.2 评分标准

数据完整性

completeness < 80%: 扣30分 completeness < 90%: 扣15分

可疑数据率

suspicious_rate > 10%: 扣20分

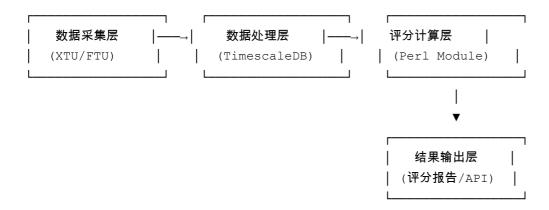
3.5 趋势分析评分(10%)

3.5.1 趋势计算

采用线性回归方法分析关键参数的变化趋势:

```
# 线性回归计算斜率
```

```
slope = (n * \Sigma(xy) - \Sigma(x) * \Sigma(y)) / (n * \Sigma(x^2) - (\Sigma(x))^2)
```


3.5.2 异常趋势识别

电流变化率|slope|>0.5A/天:扣10分功率变化率|slope|>10kW/天:扣10分

• 数据不足(<7天): 扣20分

4. 技术实现

4.1系统架构

4.2 数据库设计

4.2.1 核心表结构

```
-- 事实表:存储遥测数据
FactPowerReadings (
   TimestampKey BIGINT,
   FTUKey VARCHAR (50),
   ReadingTimestamp TIMESTAMPTZ,
   -- 13项遥测参数
   IO Current, IA Current, IB Current, IC Current,
   UA Voltage, UB Voltage, UC Voltage,
   UAB Voltage, UBC Voltage, UCA Voltage,
   ActivePower Total, ReactivePower Total, Power COS
) ;
-- 维度表:FTU设备信息
DimFTU (
   FTUKey VARCHAR (50) PRIMARY KEY,
   FTU ID VARCHAR(50),
   XTUKey VARCHAR (50),
   -- 设备属性信息
   DeviceName, OperationalStatus, VoltageLevel,
   City, County, Substation, Feeder
);
```

4.2.2 时序数据优化

```
-- 创建TimescaleDB超表
SELECT create hypertable('FactPowerReadings', 'readingtimestamp',
```

```
chunk time interval => INTERVAL '1 day');
```

-- 创建关键索引

```
CREATE INDEX idx_factpowerreadings_ftukey ON FactPowerReadings (FTUKey);
CREATE INDEX idx factpowerreadings timestampkey ON FactPowerReadings (TimestampKey);
```

4.3 Perl模块设计

4.3.1 核心类结构

```
# 主要方法
- new() # 构造函数
- calculate_health_score() # 单设备评分
- calculate_batch_health_scores() # 批量评分
- _calculate_telemetry_health() # 遥测健康度
- _calculate_operational_status() # 运行状态
- _calculate_fault_frequency() # 故障频率
- _calculate_data_quality() # 数据质量
- _calculate_trend_analysis() # 趋势分析
```

4.3.2 配置管理

```
# 阈值配置
```

```
threshold_config => {
    "IA" => {
        "lower_threshold" => 6.618440,
        "upper_threshold" => 19.227284,
        "extreme_high" => 25.0
    }
}
# 权重配置
scoring_weights => {
    telemetry_health => 0.35,
    operational_status => 0.25,
    fault_frequency => 0.20,
    data_quality => 0.10,
    trend_analysis => 0.10
```

5. 使用指南

5.1基本用法

```
use FTU::HealthScoring;
use DBI;
```

1. 数据库连接

```
my $dbh = DBI->connect("dbi:Pg:dbname=powerdb;host=localhost",
$username, $password);

# 2. 创建评分对象

my $scorer = FTU::HealthScoring->new(
    dbh => $dbh,
    debug => 1
);

# 3. 单设备评分

my $score = $scorer->calculate_health_score('FTU001', 30);
print "设备评分: $score->{total_score}\n";
print "健康等级: $score->{health_level}\n";

# 4. 批量评分

my @ftu_list = ('FTU001', 'FTU002', 'FTU003');
my $batch_scores = $scorer->calculate_batch_health_scores(\@ftu_list, 30);
```

5.2 评分结果结构

```
ftu key => 'FTU001',
timestamp => '2025-05-27 10:30:00',
days analyzed => 30,
total score => 85.3,
health level => '良好',
# 分项评分
telemetry health => {
   score => 82,
   issues => [
       {
            parameter => 'IO',
            violations => 15,
            percentage => '2.1%',
            severity => 'high'
       }
    violation rate => '0.038'
},
operational status => {
    score => 90,
   issues => [],
    analysis period => '30天'
},
fault frequency => {
   score => 88,
    issues => ['零序电流异常频率偏高: 2.3%']
},
data quality => {
   score => 95,
```

```
completeness => '98.5%'
},

trend_analysis => {
    score => 85,
    data_points => 28
},

# 改进建议
recommendations => [
    '检查遥测传感器状态,校准测量设备',
    '分析故障原因,加强预防性维护'
]
```

6. 系统特色

6.1 技术优势

• 实时性:基于TimescaleDB的时序数据库,支持实时查询

• 准确性:基于大量历史数据的统计阈值,评分更加准确

• 灵活性:模块化设计,权重和阈值可灵活配置

• 扩展性:支持新增评分维度和参数

6.2 业务价值

• 预防性维护:提前识别设备隐患,减少故障停电

• 运维优化:量化设备状态,优化维护资源配置

• 决策支持:为设备更新改造提供数据支撑

• 成本控制:降低设备故障造成的经济损失

6.3 适用场景

- 配网FTU设备的日常监控
- 设备健康状态的定期评估
- 维护计划的制定和优化
- 设备异常的早期预警

7. 部署与维护

7.1系统要求

• 数据库: PostgreSQL 12+ with TimescaleDB

• 运行环境: Perl 5.20+

• 依赖模块: DBI, JSON, List::Util, POSIX

7.2 部署步骤

- 1. 安装数据库和TimescaleDB扩展
- 2. 创建数据仓库表结构

- 3. 部署Perl评分模块
- 4. 配置数据库连接参数
- 5. 测试评分功能

7.3 维护建议

- 定期检查阈值配置的合理性
- 根据设备类型调整权重参数
- 监控评分系统的性能指标
- 收集用户反馈优化评分算法

8. 后续优化方向

8.1算法优化

- 引入机器学习算法提升预测准确性
- 增加设备类型和环境因素的考虑
- 优化异常检测的敏感度

8.2 功能扩展

- 增加评分历史趋势分析
- 支持自定义评分规则
- 集成更多数据源(气象、负荷等)

8.3 应用拓展

- 扩展到其他类型配网设备
- 集成到现有运维系统
- 开发移动端应用

版本信息: FTU设备健康评分系统 v1.0.0

更新日期:2025年5月27日

技术支持:配网终端智能运维团队