具体场景:地市级数据量、每日约20GB遥测数据。针对这种规模的电力遥测数据,我推荐以下适合的方案。
核心优势:
数据模型建议:
-- 核心测量表
CREATE TABLE power_measurements (
time TIMESTAMPTZ NOT NULL,
device_id INTEGER,
location_id INTEGER,
voltage FLOAT,
current FLOAT,
power FLOAT,
frequency FLOAT,
-- 其他测量值
PRIMARY KEY (device_id, time)
);
-- 转换为超表以启用TimescaleDB功能
SELECT create_hypertable('power_measurements', 'time',
chunk_time_interval => INTERVAL '1 day');
-- 维度表示例
CREATE TABLE dim_device (...);
CREATE TABLE dim_location (...);
核心优势:
为什么比Iceberg更适合:
技术栈:
优势:
示例功能:
-- 创建连续聚合视图(自动维护的物化视图)
CREATE MATERIALIZED VIEW hourly_power_avg
WITH (timescaledb.continuous) AS
SELECT
time_bucket('1 hour', time) AS hour,
device_id,
AVG(voltage) AS avg_voltage,
AVG(current) AS avg_current,
AVG(power) AS avg_power
FROM power_measurements
GROUP BY hour, device_id;
-- 简单关联查询示例
SELECT
h.hour,
d.device_name,
l.location_name,
h.avg_power
FROM hourly_power_avg h
JOIN dim_device d ON h.device_id = d.device_id
JOIN dim_location l ON d.location_id = l.location_id
WHERE h.hour > NOW() - INTERVAL '7 days';
技术栈:
优势:
物化视图设计:
-- 创建物化视图
CREATE MATERIALIZED VIEW power_hourly_mv
ENGINE = SummingMergeTree()
PARTITION BY toYYYYMM(hour)
ORDER BY (hour, device_id)
AS SELECT
toStartOfHour(time) AS hour,
device_id,
avg(voltage) AS avg_voltage,
avg(current) AS avg_current,
avg(power) AS avg_power
FROM power_measurements
GROUP BY hour, device_id;
数据摄入层:
存储层:
分析层:
可视化层:
基于您的需求和数据量,TimescaleDB是首选方案,其次是ClickHouse。这两个方案都比Iceberg更适合您的场景,提供更简单的部署、更高的查询性能和更低的维护成本。
在实际实施时,我建议从TimescaleDB开始,如果发现查询性能不能满足需求,再考虑迁移到ClickHouse。两者迁移路径相对平滑,SQL兼容性较好。