根据您提供的电网配网设备故障分类及遥测特征信息,我可以帮您创建一个Python脚本来生成适合机器学习的样本数据。这个脚本将基于您列出的不同故障类型及其特征生成模拟数据。

import pandas as pd
import numpy as np
import random
from datetime import datetime, timedelta

def generate_normal_data(num_samples=100):
    """生成正常运行状态的数据"""
    data = []
    
    # 正常状态下的标称值
    nominal_voltage = 10000  # 10kV系统
    nominal_current = 100    # 正常运行电流
    nominal_power_factor = 0.9
    
    for _ in range(num_samples):
        # 添加一些随机波动但保持在正常范围内
        uab = nominal_voltage * random.uniform(0.95, 1.05)
        ubc = nominal_voltage * random.uniform(0.95, 1.05)
        uca = nominal_voltage * random.uniform(0.95, 1.05)
        
        ua = uab / np.sqrt(3) * random.uniform(0.95, 1.05)
        ub = ubc / np.sqrt(3) * random.uniform(0.95, 1.05)
        uc = uca / np.sqrt(3) * random.uniform(0.95, 1.05)
        
        ia = nominal_current * random.uniform(0.8, 1.0)
        ib = nominal_current * random.uniform(0.8, 1.0)
        ic = nominal_current * random.uniform(0.8, 1.0)
        
        i0 = (ia + ib + ic) * random.uniform(0, 0.05)  # 很小的零序电流
        
        # 计算功率
        power_factor = nominal_power_factor * random.uniform(0.95, 1.05)
        active_power_a = ua * ia * power_factor
        active_power_b = ub * ib * power_factor
        active_power_c = uc * ic * power_factor
        active_power_total = active_power_a + active_power_b + active_power_c
        
        apparent_power_a = ua * ia
        apparent_power_b = ub * ib
        apparent_power_c = uc * ic
        apparent_power_total = apparent_power_a + apparent_power_b + apparent_power_c
        
        reactive_power_a = apparent_power_a * np.sin(np.arccos(power_factor))
        reactive_power_b = apparent_power_b * np.sin(np.arccos(power_factor))
        reactive_power_c = apparent_power_c * np.sin(np.arccos(power_factor))
        reactive_power_total = reactive_power_a + reactive_power_b + reactive_power_c
        
        sample = {
            "UAB": uab, "UBC": ubc, "UCA": uca,
            "UA": ua, "UB": ub, "UC": uc,
            "IA": ia, "IB": ib, "IC": ic, "I0": i0,
            "有功功率": active_power_total,
            "A相有功功率": active_power_a, "B相有功功率": active_power_b, "C相有功功率": active_power_c,
            "无功功率": reactive_power_total,
            "A相无功功率": reactive_power_a, "B相无功功率": reactive_power_b, "C相无功功率": reactive_power_c,
            "视在功率": apparent_power_total,
            "A相视在功率": apparent_power_a, "B相视在功率": apparent_power_b, "C相视在功率": apparent_power_c,
            "故障类型": "正常",
            "一级分类": "正常",
            "二级分类": "正常"
        }
        data.append(sample)
    
    return data

def generate_short_circuit_data(num_samples=100):
    """生成短路故障数据"""
    data = []
    
    # 短路故障类型
    fault_types = [
        {"一级分类": "短路故障", "二级分类": "三相短路"},
        {"一级分类": "短路故障", "二级分类": "两相短路"},
        {"一级分类": "短路故障", "二级分类": "相间短路"},
        {"一级分类": "短路故障", "二级分类": "金属性短路"},
        {"一级分类": "短路故障", "二级分类": "电弧性短路"}
    ]
    
    nominal_voltage = 10000
    nominal_current = 100
    
    for _ in range(num_samples):
        fault_type = random.choice(fault_types)
        
        if fault_type["二级分类"] == "三相短路":
            # 三相短路:三相电压接近零,电流大幅增加
            uab = nominal_voltage * random.uniform(0.0, 0.1)
            ubc = nominal_voltage * random.uniform(0.0, 0.1)
            uca = nominal_voltage * random.uniform(0.0, 0.1)
            
            ua = uab / np.sqrt(3) * random.uniform(0.0, 0.1)
            ub = ubc / np.sqrt(3) * random.uniform(0.0, 0.1)
            uc = uca / np.sqrt(3) * random.uniform(0.0, 0.1)
            
            ia = nominal_current * random.uniform(10, 20)
            ib = nominal_current * random.uniform(10, 20)
            ic = nominal_current * random.uniform(10, 20)
            
        elif fault_type["二级分类"] == "两相短路":
            # 两相短路:两相电压降低,两相电流增大
            # 随机选择两相短路
            phases = random.sample(["A", "B", "C"], 2)
            
            uab = nominal_voltage * (0.1 if ("A" in phases and "B" in phases) else random.uniform(0.9, 1.0))
            ubc = nominal_voltage * (0.1 if ("B" in phases and "C" in phases) else random.uniform(0.9, 1.0))
            uca = nominal_voltage * (0.1 if ("C" in phases and "A" in phases) else random.uniform(0.9, 1.0))
            
            ua = nominal_voltage / np.sqrt(3) * (0.1 if "A" in phases else random.uniform(0.9, 1.0))
            ub = nominal_voltage / np.sqrt(3) * (0.1 if "B" in phases else random.uniform(0.9, 1.0))
            uc = nominal_voltage / np.sqrt(3) * (0.1 if "C" in phases else random.uniform(0.9, 1.0))
            
            ia = nominal_current * (random.uniform(10, 15) if "A" in phases else random.uniform(0.8, 1.0))
            ib = nominal_current * (random.uniform(10, 15) if "B" in phases else random.uniform(0.8, 1.0))
            ic = nominal_current * (random.uniform(10, 15) if "C" in phases else random.uniform(0.8, 1.0))
            
        elif fault_type["二级分类"] == "相间短路":
            # 相间短路:类似两相短路但电压降低不那么严重
            phases = random.sample(["A", "B", "C"], 2)
            
            uab = nominal_voltage * (0.3 if ("A" in phases and "B" in phases) else random.uniform(0.9, 1.0))
            ubc = nominal_voltage * (0.3 if ("B" in phases and "C" in phases) else random.uniform(0.9, 1.0))
            uca = nominal_voltage * (0.3 if ("C" in phases and "A" in phases) else random.uniform(0.9, 1.0))
            
            ua = nominal_voltage / np.sqrt(3) * (0.3 if "A" in phases else random.uniform(0.9, 1.0))
            ub = nominal_voltage / np.sqrt(3) * (0.3 if "B" in phases else random.uniform(0.9, 1.0))
            uc = nominal_voltage / np.sqrt(3) * (0.3 if "C" in phases else random.uniform(0.9, 1.0))
            
            ia = nominal_current * (random.uniform(5, 10) if "A" in phases else random.uniform(0.8, 1.0))
            ib = nominal_current * (random.uniform(5, 10) if "B" in phases else random.uniform(0.8, 1.0))
            ic = nominal_current * (random.uniform(5, 10) if "C" in phases else random.uniform(0.8, 1.0))
            
        elif fault_type["二级分类"] == "金属性短路":
            # 金属性短路:电阻极小,电流极大
            phases = random.sample(["A", "B", "C"], random.choice([2, 3]))
            
            uab = nominal_voltage * (0.05 if ("A" in phases and "B" in phases) else random.uniform(0.9, 1.0))
            ubc = nominal_voltage * (0.05 if ("B" in phases and "C" in phases) else random.uniform(0.9, 1.0))
            uca = nominal_voltage * (0.05 if ("C" in phases and "A" in phases) else random.uniform(0.9, 1.0))
            
            ua = nominal_voltage / np.sqrt(3) * (0.05 if "A" in phases else random.uniform(0.9, 1.0))
            ub = nominal_voltage / np.sqrt(3) * (0.05 if "B" in phases else random.uniform(0.9, 1.0))
            uc = nominal_voltage / np.sqrt(3) * (0.05 if "C" in phases else random.uniform(0.9, 1.0))
            
            ia = nominal_current * (random.uniform(15, 25) if "A" in phases else random.uniform(0.8, 1.0))
            ib = nominal_current * (random.uniform(15, 25) if "B" in phases else random.uniform(0.8, 1.0))
            ic = nominal_current * (random.uniform(15, 25) if "C" in phases else random.uniform(0.8, 1.0))
            
        else:  # 电弧性短路
            # 电弧性短路:电流波动,波形畸变
            phases = random.sample(["A", "B", "C"], random.choice([2, 3]))
            
            uab = nominal_voltage * (random.uniform(0.3, 0.7) if ("A" in phases and "B" in phases) else random.uniform(0.9, 1.0))
            ubc = nominal_voltage * (random.uniform(0.3, 0.7) if ("B" in phases and "C" in phases) else random.uniform(0.9, 1.0))
            uca = nominal_voltage * (random.uniform(0.3, 0.7) if ("C" in phases and "A" in phases) else random.uniform(0.9, 1.0))
            
            ua = nominal_voltage / np.sqrt(3) * (random.uniform(0.3, 0.7) if "A" in phases else random.uniform(0.9, 1.0))
            ub = nominal_voltage / np.sqrt(3) * (random.uniform(0.3, 0.7) if "B" in phases else random.uniform(0.9, 1.0))
            uc = nominal_voltage / np.sqrt(3) * (random.uniform(0.3, 0.7) if "C" in phases else random.uniform(0.9, 1.0))
            
            # 电弧性短路电流波动较大
            ia = nominal_current * (random.uniform(3, 12) if "A" in phases else random.uniform(0.8, 1.0))
            ib = nominal_current * (random.uniform(3, 12) if "B" in phases else random.uniform(0.8, 1.0))
            ic = nominal_current * (random.uniform(3, 12) if "C" in phases else random.uniform(0.8, 1.0))
        
        # 计算零序电流,短路情况下可能较大
        i0 = (ia + ib + ic) * random.uniform(0.1, 0.9)
        
        # 功率计算 - 在短路故障下可能不准确,但为了数据完整性仍然计算
        active_power_a = ua * ia * 0.2  # 假设功率因数较低
        active_power_b = ub * ib * 0.2
        active_power_c = uc * ic * 0.2
        active_power_total = active_power_a + active_power_b + active_power_c
        
        apparent_power_a = ua * ia
        apparent_power_b = ub * ib
        apparent_power_c = uc * ic
        apparent_power_total = apparent_power_a + apparent_power_b + apparent_power_c
        
        reactive_power_a = apparent_power_a * 0.98  # 短路时无功较大
        reactive_power_b = apparent_power_b * 0.98
        reactive_power_c = apparent_power_c * 0.98
        reactive_power_total = reactive_power_a + reactive_power_b + reactive_power_c
        
        sample = {
            "UAB": uab, "UBC": ubc, "UCA": uca,
            "UA": ua, "UB": ub, "UC": uc,
            "IA": ia, "IB": ib, "IC": ic, "I0": i0,
            "有功功率": active_power_total,
            "A相有功功率": active_power_a, "B相有功功率": active_power_b, "C相有功功率": active_power_c,
            "无功功率": reactive_power_total,
            "A相无功功率": reactive_power_a, "B相无功功率": reactive_power_b, "C相无功功率": reactive_power_c,
            "视在功率": apparent_power_total,
            "A相视在功率": apparent_power_a, "B相视在功率": apparent_power_b, "C相视在功率": apparent_power_c,
            "故障类型": fault_type["二级分类"],
            "一级分类": fault_type["一级分类"],
            "二级分类": fault_type["二级分类"]
        }
        data.append(sample)
    
    return data

def generate_ground_fault_data(num_samples=100):
    """生成接地故障数据"""
    data = []
    
    fault_types = [
        {"一级分类": "接地故障", "二级分类": "单相接地"},
        {"一级分类": "接地故障", "二级分类": "低阻接地"},
        {"一级分类": "接地故障", "二级分类": "高阻接地"},
        {"一级分类": "接地故障", "二级分类": "间歇性接地"},
        {"一级分类": "接地故障", "二级分类": "中性点接地系统故障"}
    ]
    
    nominal_voltage = 10000
    nominal_current = 100
    
    for _ in range(num_samples):
        fault_type = random.choice(fault_types)
        
        if fault_type["二级分类"] == "单相接地":
            # 随机选择一相接地
            fault_phase = random.choice(["A", "B", "C"])
            
            # 接地相电压降低,其他相电压升高
            ua = nominal_voltage / np.sqrt(3) * (random.uniform(0.1, 0.3) if fault_phase == "A" else random.uniform(1.1, 1.3))
            ub = nominal_voltage / np.sqrt(3) * (random.uniform(0.1, 0.3) if fault_phase == "B" else random.uniform(1.1, 1.3))
            uc = nominal_voltage / np.sqrt(3) * (random.uniform(0.1, 0.3) if fault_phase == "C" else random.uniform(1.1, 1.3))
            
            # 相电压计算出线电压
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            # 接地相电流可能增加
            ia = nominal_current * (random.uniform(1.2, 2.0) if fault_phase == "A" else random.uniform(0.8, 1.0))
            ib = nominal_current * (random.uniform(1.2, 2.0) if fault_phase == "B" else random.uniform(0.8, 1.0))
            ic = nominal_current * (random.uniform(1.2, 2.0) if fault_phase == "C" else random.uniform(0.8, 1.0))
            
            # 零序电流明显
            i0 = (ia + ib + ic) * random.uniform(0.3, 0.8)
            
        elif fault_type["二级分类"] == "低阻接地":
            # 低阻接地:接地电流较大
            fault_phase = random.choice(["A", "B", "C"])
            
            ua = nominal_voltage / np.sqrt(3) * (random.uniform(0.05, 0.15) if fault_phase == "A" else random.uniform(1.1, 1.3))
            ub = nominal_voltage / np.sqrt(3) * (random.uniform(0.05, 0.15) if fault_phase == "B" else random.uniform(1.1, 1.3))
            uc = nominal_voltage / np.sqrt(3) * (random.uniform(0.05, 0.15) if fault_phase == "C" else random.uniform(1.1, 1.3))
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            ia = nominal_current * (random.uniform(2.0, 5.0) if fault_phase == "A" else random.uniform(0.8, 1.0))
            ib = nominal_current * (random.uniform(2.0, 5.0) if fault_phase == "B" else random.uniform(0.8, 1.0))
            ic = nominal_current * (random.uniform(2.0, 5.0) if fault_phase == "C" else random.uniform(0.8, 1.0))
            
            # 低阻接地零序电流大
            i0 = (ia + ib + ic) * random.uniform(0.6, 0.9)
            
        elif fault_type["二级分类"] == "高阻接地":
            # 高阻接地:接地电流较小
            fault_phase = random.choice(["A", "B", "C"])
            
            ua = nominal_voltage / np.sqrt(3) * (random.uniform(0.4, 0.8) if fault_phase == "A" else random.uniform(1.05, 1.2))
            ub = nominal_voltage / np.sqrt(3) * (random.uniform(0.4, 0.8) if fault_phase == "B" else random.uniform(1.05, 1.2))
            uc = nominal_voltage / np.sqrt(3) * (random.uniform(0.4, 0.8) if fault_phase == "C" else random.uniform(1.05, 1.2))
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            ia = nominal_current * (random.uniform(1.0, 1.3) if fault_phase == "A" else random.uniform(0.8, 1.0))
            ib = nominal_current * (random.uniform(1.0, 1.3) if fault_phase == "B" else random.uniform(0.8, 1.0))
            ic = nominal_current * (random.uniform(1.0, 1.3) if fault_phase == "C" else random.uniform(0.8, 1.0))
            
            # 高阻接地零序电流小
            i0 = (ia + ib + ic) * random.uniform(0.05, 0.2)
            
        elif fault_type["二级分类"] == "间歇性接地":
            # 间歇性接地:电流电压波动
            fault_phase = random.choice(["A", "B", "C"])
            
            # 模拟波动性
            wave_factor = random.uniform(0.3, 0.9)
            
            ua = nominal_voltage / np.sqrt(3) * (wave_factor if fault_phase == "A" else random.uniform(1.0, 1.2))
            ub = nominal_voltage / np.sqrt(3) * (wave_factor if fault_phase == "B" else random.uniform(1.0, 1.2))
            uc = nominal_voltage / np.sqrt(3) * (wave_factor if fault_phase == "C" else random.uniform(1.0, 1.2))
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            wave_factor = random.uniform(1.0, 2.0)
            
            ia = nominal_current * (wave_factor if fault_phase == "A" else random.uniform(0.8, 1.0))
            ib = nominal_current * (wave_factor if fault_phase == "B" else random.uniform(0.8, 1.0))
            ic = nominal_current * (wave_factor if fault_phase == "C" else random.uniform(0.8, 1.0))
            
            # 间歇性接地零序电流波动
            i0 = (ia + ib + ic) * random.uniform(0.1, 0.7)
            
        else:  # 中性点接地系统故障
            # 三相电压整体不平衡
            ua = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            ub = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            uc = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            ia = nominal_current * random.uniform(0.8, 1.2)
            ib = nominal_current * random.uniform(0.8, 1.2)
            ic = nominal_current * random.uniform(0.8, 1.2)
            
            # 中性点接地故障零序电流异常
            i0 = (ia + ib + ic) * random.uniform(0.2, 0.4)
        
        # 计算功率
        power_factor = random.uniform(0.7, 0.9)
        active_power_a = ua * ia * power_factor
        active_power_b = ub * ib * power_factor
        active_power_c = uc * ic * power_factor
        active_power_total = active_power_a + active_power_b + active_power_c
        
        apparent_power_a = ua * ia
        apparent_power_b = ub * ib
        apparent_power_c = uc * ic
        apparent_power_total = apparent_power_a + apparent_power_b + apparent_power_c
        
        reactive_power_a = apparent_power_a * np.sin(np.arccos(power_factor))
        reactive_power_b = apparent_power_b * np.sin(np.arccos(power_factor))
        reactive_power_c = apparent_power_c * np.sin(np.arccos(power_factor))
        reactive_power_total = reactive_power_a + reactive_power_b + reactive_power_c
        
        sample = {
            "UAB": uab, "UBC": ubc, "UCA": uca,
            "UA": ua, "UB": ub, "UC": uc,
            "IA": ia, "IB": ib, "IC": ic, "I0": i0,
            "有功功率": active_power_total,
            "A相有功功率": active_power_a, "B相有功功率": active_power_b, "C相有功功率": active_power_c,
            "无功功率": reactive_power_total,
            "A相无功功率": reactive_power_a, "B相无功功率": reactive_power_b, "C相无功功率": reactive_power_c,
            "视在功率": apparent_power_total,
            "A相视在功率": apparent_power_a, "B相视在功率": apparent_power_b, "C相视在功率": apparent_power_c,
            "故障类型": fault_type["二级分类"],
            "一级分类": fault_type["一级分类"],
            "二级分类": fault_type["二级分类"]
        }
        data.append(sample)
    
    return data

def generate_voltage_loss_data(num_samples=100):
    """生成失压故障数据"""
    data = []
    
    fault_types = [
        {"一级分类": "失压故障", "二级分类": "全电压失压"},
        {"一级分类": "失压故障", "二级分类": "部分失压"},
        {"一级分类": "失压故障", "二级分类": "电压骤降"},
        {"一级分类": "失压故障", "二级分类": "欠电压"},
        {"一级分类": "失压故障", "二级分类": "电压不平衡"}
    ]
    
    nominal_voltage = 10000
    nominal_current = 100
    
    for _ in range(num_samples):
        fault_type = random.choice(fault_types)
        
        if fault_type["二级分类"] == "全电压失压":
            # 全电压失压:三相电压接近零
            uab = nominal_voltage * random.uniform(0, 0.05)
            ubc = nominal_voltage * random.uniform(0, 0.05)
            uca = nominal_voltage * random.uniform(0, 0.05)
            
            ua = uab / np.sqrt(3) * random.uniform(0, 0.05)
            ub = ubc / np.sqrt(3) * random.uniform(0, 0.05)
            uc = uca / np.sqrt(3) * random.uniform(0, 0.05)
            
            # 电流也接近零
            ia = nominal_current * random.uniform(0, 0.1)
            ib = nominal_current * random.uniform(0, 0.1)
            ic = nominal_current * random.uniform(0, 0.1)
            
            i0 = (ia + ib + ic) * random.uniform(0, 0.1)
            
        elif fault_type["二级分类"] == "部分失压":
            # 部分失压:部分相位电压消失
            lost_phases = random.sample(["A", "B", "C"], random.choice([1, 2]))
            
            ua = nominal_voltage / np.sqrt(3) * (random.uniform(0, 0.05) if "A" in lost_phases else random.uniform(0.95, 1.05))
            ub = nominal_voltage / np.sqrt(3) * (random.uniform(0, 0.05) if "B" in lost_phases else random.uniform(0.95, 1.05))
            uc = nominal_voltage / np.sqrt(3) * (random.uniform(0, 0.05) if "C" in lost_phases else random.uniform(0.95, 1.05))
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            ia = nominal_current * (random.uniform(0, 0.1) if "A" in lost_phases else random.uniform(0.95, 1.05))
            ib = nominal_current * (random.uniform(0, 0.1) if "B" in lost_phases else random.uniform(0.95, 1.05))
            ic = nominal_current * (random.uniform(0, 0.1) if "C" in lost_phases else random.uniform(0.95, 1.05))
            
            i0 = (ia + ib + ic) * random.uniform(0.1, 0.3)
            
        elif fault_type["二级分类"] == "电压骤降":
            # 电压骤降:电压显著下降但不为零
            drop_factor = random.uniform(0.5, 0.85)
            
            uab = nominal_voltage * drop_factor
            ubc = nominal_voltage * drop_factor
            uca = nominal_voltage * drop_factor
            
            ua = uab / np.sqrt(3) * random.uniform(0.95, 1.05)
            ub = ubc / np.sqrt(3) * random.uniform(0.95, 1.05)
            uc = uca / np.sqrt(3) * random.uniform(0.95, 1.05)
            
            # 电流可能略有下降
            ia = nominal_current * random.uniform(0.8, 1.0)
            ib = nominal_current * random.uniform(0.8, 1.0)
            ic = nominal_current * random.uniform(0.8, 1.0)
            
            i0 = (ia + ib + ic) * random.uniform(0.05, 0.15)
            
        elif fault_type["二级分类"] == "欠电压":
            # 欠电压:持续的较低电压
            low_factor = random.uniform(0.7, 0.9)
            
            uab = nominal_voltage * low_factor
            ubc = nominal_voltage * low_factor
            uca = nominal_voltage * low_factor
            
            ua = uab / np.sqrt(3) * random.uniform(0.95, 1.05)
            ub = ubc / np.sqrt(3) * random.uniform(0.95, 1.05)
            uc = uca / np.sqrt(3) * random.uniform(0.95, 1.05)
            
            # 电流可能增加(因为负载试图维持恒定功率)
            ia = nominal_current * random.uniform(1.0, 1.2)
            ib = nominal_current * random.uniform(1.0, 1.2)
            ic = nominal_current * random.uniform(1.0, 1.2)
            
            i0 = (ia + ib + ic) * random.uniform(0.05, 0.15)
            
        else:  # 电压不平衡
            # 电压不平衡:三相电压不平衡
            ua = nominal_voltage / np.sqrt(3) * random.uniform(0.8, 1.2)
            ub = nominal_voltage / np.sqrt(3) * random.uniform(0.8, 1.2)
            uc = nominal_voltage / np.sqrt(3) * random.uniform(0.8, 1.2)
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            # 电流也可能不平衡
            ia = nominal_current * random.uniform(0.8, 1.2)
            ib = nominal_current * random.uniform(0.8, 1.2)
            ic = nominal_current * random.uniform(0.8, 1.2)
            
            i0 = (ia + ib + ic) * random.uniform(0.1, 0.3)
        
        # 计算功率
        power_factor = random.uniform(0.7, 0.9)
        active_power_a = ua * ia * power_factor
        active_power_b = ub * ib * power_factor
        active_power_c = uc * ic * power_factor
        active_power_total = active_power_a + active_power_b + active_power_c
        
        apparent_power_a = ua * ia
        apparent_power_b = ub * ib
        apparent_power_c = uc * ic
        apparent_power_total = apparent_power_a + apparent_power_b + apparent_power_c
        
        reactive_power_a = apparent_power_a * np.sin(np.arccos(power_factor))
        reactive_power_b = apparent_power_b * np.sin(np.arccos(power_factor))
        reactive_power_c = apparent_power_c * np.sin(np.arccos(power_factor))
        reactive_power_total = reactive_power_a + reactive_power_b + reactive_power_c
        
        sample = {
            "UAB": uab, "UBC": ubc, "UCA": uca,
            "UA": ua, "UB": ub, "UC": uc,
            "IA": ia, "IB": ib, "IC": ic, "I0": i0,
            "有功功率": active_power_total,
            "A相有功功率": active_power_a, "B相有功功率": active_power_b, "C相有功功率": active_power_c,
            "无功功率": reactive_power_total,
            "A相无功功率": reactive_power_a, "B相无功功率": reactive_power_b, "C相无功功率": reactive_power_c,
            "视在功率": apparent_power_total,
            "A相视在功率": apparent_power_a, "B相视在功率": apparent_power_b, "C相视在功率": apparent_power_c,
            "故障类型": fault_type["二级分类"],
            "一级分类": fault_type["一级分类"],
            "二级分类": fault_type["二级分类"]
        }
        data.append(sample)
    
    return data

def generate_overload_data(num_samples=100):
    """生成过载故障数据"""
    data = []
    
    fault_types = [
        {"一级分类": "过载故障", "二级分类": "持续过载"},
        {"一级分类": "过载故障", "二级分类": "短时过载"},
        {"一级分类": "过载故障", "二级分类": "变压器过载"},
        {"一级分类": "过载故障", "二级分类": "线路过载"},
        {"一级分类": "过载故障", "二级分类": "开关设备过载"}
    ]
    
    nominal_voltage = 10000
    nominal_current = 100
    
    for _ in range(num_samples):
        fault_type = random.choice(fault_types)
        
        if fault_type["二级分类"] == "持续过载":
            # 持续过载:电流持续超过额定值
            overload_factor = random.uniform(1.2, 1.5)
            
            # 电压可能有轻微下降
            uab = nominal_voltage * random.uniform(0.9, 1.0)
            ubc = nominal_voltage * random.uniform(0.9, 1.0)
            uca = nominal_voltage * random.uniform(0.9, 1.0)
            
            ua = uab / np.sqrt(3) * random.uniform(0.95, 1.05)
            ub = ubc / np.sqrt(3) * random.uniform(0.95, 1.05)
            uc = uca / np.sqrt(3) * random.uniform(0.95, 1.05)
            
            # 所有相电流都增加
            ia = nominal_current * overload_factor * random.uniform(0.95, 1.05)
            ib = nominal_current * overload_factor * random.uniform(0.95, 1.05)
            ic = nominal_current * overload_factor * random.uniform(0.95, 1.05)
            
            i0 = (ia + ib + ic) * random.uniform(0.05, 0.15)
            
        elif fault_type["二级分类"] == "短时过载":
            # 短时过载:电流短时间大幅增加
            overload_factor = random.uniform(1.5, 2.5)
            
            uab = nominal_voltage * random.uniform(0.85, 0.95)
            ubc = nominal_voltage * random.uniform(0.85, 0.95)
            uca = nominal_voltage * random.uniform(0.85, 0.95)
            
            ua = uab / np.sqrt(3) * random.uniform(0.95, 1.05)
            ub = ubc / np.sqrt(3) * random.uniform(0.95, 1.05)
            uc = uca / np.sqrt(3) * random.uniform(0.95, 1.05)
            
            ia = nominal_current * overload_factor * random.uniform(0.9, 1.1)
            ib = nominal_current * overload_factor * random.uniform(0.9, 1.1)
            ic = nominal_current * overload_factor * random.uniform(0.9, 1.1)
            
            i0 = (ia + ib + ic) * random.uniform(0.1, 0.2)
            
        elif fault_type["二级分类"] == "变压器过载":
            # 变压器过载:电流增加,电压可能有下降
            overload_factor = random.uniform(1.3, 1.8)
            
            uab = nominal_voltage * random.uniform(0.9, 0.98)
            ubc = nominal_voltage * random.uniform(0.9, 0.98)
            uca = nominal_voltage * random.uniform(0.9, 0.98)
            
            ua = uab / np.sqrt(3) * random.uniform(0.95, 1.05)
            ub = ubc / np.sqrt(3) * random.uniform(0.95, 1.05)
            uc = uca / np.sqrt(3) * random.uniform(0.95, 1.05)
            
            ia = nominal_current * overload_factor * random.uniform(0.95, 1.05)
            ib = nominal_current * overload_factor * random.uniform(0.95, 1.05)
            ic = nominal_current * overload_factor * random.uniform(0.95, 1.05)
            
            i0 = (ia + ib + ic) * random.uniform(0.05, 0.2)
            
        elif fault_type["二级分类"] == "线路过载":
            # 线路过载:电流增加,可能有电压降
            overload_factor = random.uniform(1.2, 2.0)
            
            # 线路阻抗导致的电压降
            voltage_drop = random.uniform(0.1, 0.2)
            
            uab = nominal_voltage * (1 - voltage_drop)
            ubc = nominal_voltage * (1 - voltage_drop)
            uca = nominal_voltage * (1 - voltage_drop)
            
            ua = uab / np.sqrt(3) * random.uniform(0.95, 1.05)
            ub = ubc / np.sqrt(3) * random.uniform(0.95, 1.05)
            uc = uca / np.sqrt(3) * random.uniform(0.95, 1.05)
            
            ia = nominal_current * overload_factor * random.uniform(0.95, 1.05)
            ib = nominal_current * overload_factor * random.uniform(0.95, 1.05)
            ic = nominal_current * overload_factor * random.uniform(0.95, 1.05)
            
            i0 = (ia + ib + ic) * random.uniform(0.05, 0.15)
            
        else:  # 开关设备过载
            # 开关设备过载:电流增加,可能有局部发热
            overload_factor = random.uniform(1.3, 1.7)
            
            uab = nominal_voltage * random.uniform(0.92, 1.0)
            ubc = nominal_voltage * random.uniform(0.92, 1.0)
            uca = nominal_voltage * random.uniform(0.92, 1.0)
            
            ua = uab / np.sqrt(3) * random.uniform(0.95, 1.05)
            ub = ubc / np.sqrt(3) * random.uniform(0.95, 1.05)
            uc = uca / np.sqrt(3) * random.uniform(0.95, 1.05)
            
            # 某一相可能负载更重
            heavy_phase = random.choice(["A", "B", "C"])
            
            ia = nominal_current * (overload_factor * 1.2 if heavy_phase == "A" else overload_factor) * random.uniform(0.95, 1.05)
            ib = nominal_current * (overload_factor * 1.2 if heavy_phase == "B" else overload_factor) * random.uniform(0.95, 1.05)
            ic = nominal_current * (overload_factor * 1.2 if heavy_phase == "C" else overload_factor) * random.uniform(0.95, 1.05)
            
            i0 = (ia + ib + ic) * random.uniform(0.1, 0.2)
        
        # 计算功率
        power_factor = random.uniform(0.75, 0.95)  # 过载情况下功率因数可能较好
        active_power_a = ua * ia * power_factor
        active_power_b = ub * ib * power_factor
        active_power_c = uc * ic * power_factor
        active_power_total = active_power_a + active_power_b + active_power_c
        
        apparent_power_a = ua * ia
        apparent_power_b = ub * ib
        apparent_power_c = uc * ic
        apparent_power_total = apparent_power_a + apparent_power_b + apparent_power_c
        
        reactive_power_a = apparent_power_a * np.sin(np.arccos(power_factor))
        reactive_power_b = apparent_power_b * np.sin(np.arccos(power_factor))
        reactive_power_c = apparent_power_c * np.sin(np.arccos(power_factor))
        reactive_power_total = reactive_power_a + reactive_power_b + reactive_power_c
        
        sample = {
            "UAB": uab, "UBC": ubc, "UCA": uca,
            "UA": ua, "UB": ub, "UC": uc,
            "IA": ia, "IB": ib, "IC": ic, "I0": i0,
            "有功功率": active_power_total,
            "A相有功功率": active_power_a, "B相有功功率": active_power_b, "C相有功功率": active_power_c,
            "无功功率": reactive_power_total,
            "A相无功功率": reactive_power_a, "B相无功功率": reactive_power_b, "C相无功功率": reactive_power_c,
            "视在功率": apparent_power_total,
            "A相视在功率": apparent_power_a, "B相视在功率": apparent_power_b, "C相视在功率": apparent_power_c,
            "故障类型": fault_type["二级分类"],
            "一级分类": fault_type["一级分类"],
            "二级分类": fault_type["二级分类"]
        }
        data.append(sample)
    
    return data

def generate_open_circuit_data(num_samples=100):
    """生成断路故障数据"""
    data = []
    
    fault_types = [
        {"一级分类": "断路故障", "二级分类": "导线断线"},
        {"一级分类": "断路故障", "二级分类": "接头断开"},
        {"一级分类": "断路故障", "二级分类": "开关拒动"},
        {"一级分类": "断路故障", "二级分类": "熔断器熔断"},
        {"一级分类": "断路故障", "二级分类": "机械性断路"}
    ]
    
    nominal_voltage = 10000
    nominal_current = 100
    
    for _ in range(num_samples):
        fault_type = random.choice(fault_types)
        
        if fault_type["二级分类"] == "导线断线":
            # 导线断线:断线相电流为零,电压可能异常
            broken_phase = random.choice(["A", "B", "C"])
            
            ua = nominal_voltage / np.sqrt(3) * (0 if broken_phase == "A" else random.uniform(0.9, 1.1))
            ub = nominal_voltage / np.sqrt(3) * (0 if broken_phase == "B" else random.uniform(0.9, 1.1))
            uc = nominal_voltage / np.sqrt(3) * (0 if broken_phase == "C" else random.uniform(0.9, 1.1))
            
            # 根据相电压计算线电压
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            ia = nominal_current * (0 if broken_phase == "A" else random.uniform(0.8, 1.0))
            ib = nominal_current * (0 if broken_phase == "B" else random.uniform(0.8, 1.0))
            ic = nominal_current * (0 if broken_phase == "C" else random.uniform(0.8, 1.0))
            
            i0 = (ia + ib + ic) * random.uniform(0.1, 0.3)
            
        elif fault_type["二级分类"] == "接头断开":
            # 接头断开:局部接触电阻增大,电流波动
            bad_joint_phase = random.choice(["A", "B", "C"])
            
            ua = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            ub = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            uc = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            # 接头不良可能导致电流波动减小
            ia = nominal_current * (random.uniform(0.3, 0.7) if bad_joint_phase == "A" else random.uniform(0.8, 1.0))
            ib = nominal_current * (random.uniform(0.3, 0.7) if bad_joint_phase == "B" else random.uniform(0.8, 1.0))
            ic = nominal_current * (random.uniform(0.3, 0.7) if bad_joint_phase == "C" else random.uniform(0.8, 1.0))
            
            i0 = (ia + ib + ic) * random.uniform(0.1, 0.2)
            
        elif fault_type["二级分类"] == "开关拒动":
            # 开关拒动:可能表现为电流正常但无法切断
            # 这里模拟某些相电流正常,某些相无法切断
            stuck_phase = random.choice(["A", "B", "C"])
            
            ua = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            ub = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            uc = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            # 拒动相电流可能仍在流动
            ia = nominal_current * (random.uniform(0.8, 1.0) if stuck_phase == "A" else 0)
            ib = nominal_current * (random.uniform(0.8, 1.0) if stuck_phase == "B" else 0)
            ic = nominal_current * (random.uniform(0.8, 1.0) if stuck_phase == "C" else 0)
            
            i0 = (ia + ib + ic) * random.uniform(0.1, 0.3)
            
        elif fault_type["二级分类"] == "熔断器熔断":
            # 熔断器熔断:相电流为零,电压可能仍有
            fused_phase = random.choice(["A", "B", "C"])
            
            ua = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            ub = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            uc = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            # 熔断相电流为零
            ia = nominal_current * (0 if fused_phase == "A" else random.uniform(0.8, 1.0))
            ib = nominal_current * (0 if fused_phase == "B" else random.uniform(0.8, 1.0))
            ic = nominal_current * (0 if fused_phase == "C" else random.uniform(0.8, 1.0))
            
            i0 = (ia + ib + ic) * random.uniform(0.1, 0.2)
            
        else:  # 机械性断路
            # 机械性断路:可能表现为较复杂的电气特性
            broken_phases = random.sample(["A", "B", "C"], random.choice([1, 2]))
            
            ua = nominal_voltage / np.sqrt(3) * (random.uniform(0, 0.3) if "A" in broken_phases else random.uniform(0.9, 1.1))
            ub = nominal_voltage / np.sqrt(3) * (random.uniform(0, 0.3) if "B" in broken_phases else random.uniform(0.9, 1.1))
            uc = nominal_voltage / np.sqrt(3) * (random.uniform(0, 0.3) if "C" in broken_phases else random.uniform(0.9, 1.1))
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            ia = nominal_current * (random.uniform(0, 0.2) if "A" in broken_phases else random.uniform(0.8, 1.0))
            ib = nominal_current * (random.uniform(0, 0.2) if "B" in broken_phases else random.uniform(0.8, 1.0))
            ic = nominal_current * (random.uniform(0, 0.2) if "C" in broken_phases else random.uniform(0.8, 1.0))
            
            i0 = (ia + ib + ic) * random.uniform(0.1, 0.3)
        
        # 计算功率 - 断路情况下功率会减小
        power_factor = random.uniform(0.7, 0.9)
        active_power_a = ua * ia * power_factor
        active_power_b = ub * ib * power_factor
        active_power_c = uc * ic * power_factor
        active_power_total = active_power_a + active_power_b + active_power_c
        
        apparent_power_a = ua * ia
        apparent_power_b = ub * ib
        apparent_power_c = uc * ic
        apparent_power_total = apparent_power_a + apparent_power_b + apparent_power_c
        
        reactive_power_a = apparent_power_a * np.sin(np.arccos(power_factor))
        reactive_power_b = apparent_power_b * np.sin(np.arccos(power_factor))
        reactive_power_c = apparent_power_c * np.sin(np.arccos(power_factor))
        reactive_power_total = reactive_power_a + reactive_power_b + reactive_power_c
        
        sample = {
            "UAB": uab, "UBC": ubc, "UCA": uca,
            "UA": ua, "UB": ub, "UC": uc,
            "IA": ia, "IB": ib, "IC": ic, "I0": i0,
            "有功功率": active_power_total,
            "A相有功功率": active_power_a, "B相有功功率": active_power_b, "C相有功功率": active_power_c,
            "无功功率": reactive_power_total,
            "A相无功功率": reactive_power_a, "B相无功功率": reactive_power_b, "C相无功功率": reactive_power_c,
            "视在功率": apparent_power_total,
            "A相视在功率": apparent_power_a, "B相视在功率": apparent_power_b, "C相视在功率": apparent_power_c,
            "故障类型": fault_type["二级分类"],
            "一级分类": fault_type["一级分类"],
            "二级分类": fault_type["二级分类"]
        }
        data.append(sample)
    
    return data

def generate_equipment_fault_data(num_samples=100):
    """生成设备故障数据"""
    data = []
    
    fault_types = [
        {"一级分类": "设备故障", "二级分类": "变压器故障"},
        {"一级分类": "设备故障", "二级分类": "断路器故障"},
        {"一级分类": "设备故障", "二级分类": "电缆故障"},
        {"一级分类": "设备故障", "二级分类": "避雷器故障"},
        {"一级分类": "设备故障", "二级分类": "电容器故障"},
        {"一级分类": "设备故障", "二级分类": "互感器故障"}
    ]
    
    nominal_voltage = 10000
    nominal_current = 100
    
    for _ in range(num_samples):
        fault_type = random.choice(fault_types)
        
        if fault_type["二级分类"] == "变压器故障":
            # 变压器故障:可能表现为电压电流不平衡等
            fault_severity = random.choice(["轻微", "严重"])
            
            if fault_severity == "轻微":
                # 轻微故障:电压轻微不平衡,可能有增加的零序电流
                ua = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
                ub = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
                uc = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
                
                ia = nominal_current * random.uniform(0.9, 1.1)
                ib = nominal_current * random.uniform(0.9, 1.1)
                ic = nominal_current * random.uniform(0.9, 1.1)
                
                i0 = (ia + ib + ic) * random.uniform(0.1, 0.25)
                
            else:
                # 严重故障:可能有明显的电压下降或电流上升
                ua = nominal_voltage / np.sqrt(3) * random.uniform(0.7, 0.9)
                ub = nominal_voltage / np.sqrt(3) * random.uniform(0.7, 0.9)
                uc = nominal_voltage / np.sqrt(3) * random.uniform(0.7, 0.9)
                
                ia = nominal_current * random.uniform(1.2, 1.5)
                ib = nominal_current * random.uniform(1.2, 1.5)
                ic = nominal_current * random.uniform(1.2, 1.5)
                
                i0 = (ia + ib + ic) * random.uniform(0.2, 0.4)
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
        elif fault_type["二级分类"] == "断路器故障":
            # 断路器故障:可能导致无法正确切断电流
            ua = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            ub = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            uc = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            # 可能有一相电流异常(未能正确切断)
            faulty_phase = random.choice(["A", "B", "C"])
            
            ia = nominal_current * (random.uniform(1.0, 1.5) if faulty_phase == "A" else random.uniform(0.1, 0.3))
            ib = nominal_current * (random.uniform(1.0, 1.5) if faulty_phase == "B" else random.uniform(0.1, 0.3))
            ic = nominal_current * (random.uniform(1.0, 1.5) if faulty_phase == "C" else random.uniform(0.1, 0.3))
            
            i0 = (ia + ib + ic) * random.uniform(0.2, 0.4)
            
        elif fault_type["二级分类"] == "电缆故障":
            # 电缆故障:可能表现为绝缘问题,泄漏电流
            ua = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            ub = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            uc = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            ia = nominal_current * random.uniform(0.8, 1.2)
            ib = nominal_current * random.uniform(0.8, 1.2)
            ic = nominal_current * random.uniform(0.8, 1.2)
            
            # 电缆故障可能导致较大的零序电流
            i0 = (ia + ib + ic) * random.uniform(0.3, 0.5)
            
        elif fault_type["二级分类"] == "避雷器故障":
            # 避雷器故障:正常运行时可能不明显,但可能有泄漏电流
            ua = nominal_voltage / np.sqrt(3) * random.uniform(0.95, 1.05)
            ub = nominal_voltage / np.sqrt(3) * random.uniform(0.95, 1.05)
            uc = nominal_voltage / np.sqrt(3) * random.uniform(0.95, 1.05)
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            ia = nominal_current * random.uniform(0.9, 1.1)
            ib = nominal_current * random.uniform(0.9, 1.1)
            ic = nominal_current * random.uniform(0.9, 1.1)
            
            # 轻微的泄漏电流
            i0 = (ia + ib + ic) * random.uniform(0.05, 0.15)
            
        elif fault_type["二级分类"] == "电容器故障":
            # 电容器故障:可能导致无功功率不平衡
            ua = nominal_voltage / np.sqrt(3) * random.uniform(0.95, 1.05)
            ub = nominal_voltage / np.sqrt(3) * random.uniform(0.95, 1.05)
            uc = nominal_voltage / np.sqrt(3) * random.uniform(0.95, 1.05)
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            faulty_phase = random.choice(["A", "B", "C"])
            
            ia = nominal_current * random.uniform(0.8, 1.2)
            ib = nominal_current * random.uniform(0.8, 1.2)
            ic = nominal_current * random.uniform(0.8, 1.2)
            
            i0 = (ia + ib + ic) * random.uniform(0.1, 0.2)
            
            # 电容器故障会影响功率因数计算
            power_factor = random.uniform(0.6, 0.8)
            
        else:  # 互感器故障
            # 互感器故障:可能导致测量值异常
            ua = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            ub = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            uc = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            faulty_phase = random.choice(["A", "B", "C"])
            
            # 互感器故障可能导致测量值异常偏高或偏低
            if random.choice([True, False]):
                # 异常偏高
                ia = nominal_current * (random.uniform(1.5, 3.0) if faulty_phase == "A" else random.uniform(0.8, 1.2))
                ib = nominal_current * (random.uniform(1.5, 3.0) if faulty_phase == "B" else random.uniform(0.8, 1.2))
                ic = nominal_current * (random.uniform(1.5, 3.0) if faulty_phase == "C" else random.uniform(0.8, 1.2))
            else:
                # 异常偏低
                ia = nominal_current * (random.uniform(0.1, 0.5) if faulty_phase == "A" else random.uniform(0.8, 1.2))
                ib = nominal_current * (random.uniform(0.1, 0.5) if faulty_phase == "B" else random.uniform(0.8, 1.2))
                ic = nominal_current * (random.uniform(0.1, 0.5) if faulty_phase == "C" else random.uniform(0.8, 1.2))
            
            i0 = (ia + ib + ic) * random.uniform(0.1, 0.3)
        
        # 计算功率
        power_factor = random.uniform(0.7, 0.9)
        active_power_a = ua * ia * power_factor
        active_power_b = ub * ib * power_factor
        active_power_c = uc * ic * power_factor
        active_power_total = active_power_a + active_power_b + active_power_c
        
        apparent_power_a = ua * ia
        apparent_power_b = ub * ib
        apparent_power_c = uc * ic
        apparent_power_total = apparent_power_a + apparent_power_b + apparent_power_c
        
        reactive_power_a = apparent_power_a * np.sin(np.arccos(power_factor))
        reactive_power_b = apparent_power_b * np.sin(np.arccos(power_factor))
        reactive_power_c = apparent_power_c * np.sin(np.arccos(power_factor))
        reactive_power_total = reactive_power_a + reactive_power_b + reactive_power_c
        
        sample = {
            "UAB": uab, "UBC": ubc, "UCA": uca,
            "UA": ua, "UB": ub, "UC": uc,
            "IA": ia, "IB": ib, "IC": ic, "I0": i0,
            "有功功率": active_power_total,
            "A相有功功率": active_power_a, "B相有功功率": active_power_b, "C相有功功率": active_power_c,
            "无功功率": reactive_power_total,
            "A相无功功率": reactive_power_a, "B相无功功率": reactive_power_b, "C相无功功率": reactive_power_c,
            "视在功率": apparent_power_total,
            "A相视在功率": apparent_power_a, "B相视在功率": apparent_power_b, "C相视在功率": apparent_power_c,
            "故障类型": fault_type["二级分类"],
            "一级分类": fault_type["一级分类"],
            "二级分类": fault_type["二级分类"]
        }
        data.append(sample)
    
    return data

def generate_environmental_fault_data(num_samples=100):
    """生成环境因素导致的故障数据"""
    data = []
    
    fault_types = [
        {"一级分类": "环境因素", "二级分类": "雷击故障"},
        {"一级分类": "环境因素", "二级分类": "污秽闪络"},
        {"一级分类": "环境因素", "二级分类": "风灾故障"},
        {"一级分类": "环境因素", "二级分类": "冰雪灾害"},
        {"一级分类": "环境因素", "二级分类": "外力破坏"},
        {"一级分类": "环境因素", "二级分类": "动物侵害"}
    ]
    
    nominal_voltage = 10000
    nominal_current = 100
    
    for _ in range(num_samples):
        fault_type = random.choice(fault_types)
        
        if fault_type["二级分类"] == "雷击故障":
            # 雷击故障:可能导致瞬时过电压和绝缘击穿
            # 随机选择受影响的相
            affected_phases = random.sample(["A", "B", "C"], random.choice([1, 2, 3]))
            
            ua = nominal_voltage / np.sqrt(3) * (random.uniform(1.3, 2.0) if "A" in affected_phases else random.uniform(0.9, 1.1))
            ub = nominal_voltage / np.sqrt(3) * (random.uniform(1.3, 2.0) if "B" in affected_phases else random.uniform(0.9, 1.1))
            uc = nominal_voltage / np.sqrt(3) * (random.uniform(1.3, 2.0) if "C" in affected_phases else random.uniform(0.9, 1.1))
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            # 雷击可能导致瞬时大电流
            ia = nominal_current * (random.uniform(3.0, 8.0) if "A" in affected_phases else random.uniform(0.8, 1.2))
            ib = nominal_current * (random.uniform(3.0, 8.0) if "B" in affected_phases else random.uniform(0.8, 1.2))
            ic = nominal_current * (random.uniform(3.0, 8.0) if "C" in affected_phases else random.uniform(0.8, 1.2))
            
            i0 = (ia + ib + ic) * random.uniform(0.3, 0.7)
            
        elif fault_type["二级分类"] == "污秽闪络":
            # 污秽闪络:可能导致绝缘子表面闪络
            # 随机选择受影响的相
            affected_phases = random.sample(["A", "B", "C"], random.choice([1, 2]))
            
            ua = nominal_voltage / np.sqrt(3) * (random.uniform(0.7, 0.9) if "A" in affected_phases else random.uniform(0.9, 1.1))
            ub = nominal_voltage / np.sqrt(3) * (random.uniform(0.7, 0.9) if "B" in affected_phases else random.uniform(0.9, 1.1))
            uc = nominal_voltage / np.sqrt(3) * (random.uniform(0.7, 0.9) if "C" in affected_phases else random.uniform(0.9, 1.1))
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            # 污秽闪络可能导致泄漏电流增加
            ia = nominal_current * (random.uniform(1.2, 2.0) if "A" in affected_phases else random.uniform(0.8, 1.0))
            ib = nominal_current * (random.uniform(1.2, 2.0) if "B" in affected_phases else random.uniform(0.8, 1.0))
            ic = nominal_current * (random.uniform(1.2, 2.0) if "C" in affected_phases else random.uniform(0.8, 1.0))
            
            i0 = (ia + ib + ic) * random.uniform(0.2, 0.5)
            
        elif fault_type["二级分类"] == "风灾故障":
            # 风灾故障:可能导致导线摇摆、短路或断线
            fault_mode = random.choice(["摇摆接触", "短路", "断线"])
            
            if fault_mode == "摇摆接触":
                # 导线摇摆可能导致相间短路
                affected_phases = random.sample(["A", "B", "C"], 2)
                
                ua = nominal_voltage / np.sqrt(3) * (random.uniform(0.5, 0.8) if "A" in affected_phases else random.uniform(0.9, 1.1))
                ub = nominal_voltage / np.sqrt(3) * (random.uniform(0.5, 0.8) if "B" in affected_phases else random.uniform(0.9, 1.1))
                uc = nominal_voltage / np.sqrt(3) * (random.uniform(0.5, 0.8) if "C" in affected_phases else random.uniform(0.9, 1.1))
                
                ia = nominal_current * (random.uniform(1.5, 3.0) if "A" in affected_phases else random.uniform(0.8, 1.0))
                ib = nominal_current * (random.uniform(1.5, 3.0) if "B" in affected_phases else random.uniform(0.8, 1.0))
                ic = nominal_current * (random.uniform(1.5, 3.0) if "C" in affected_phases else random.uniform(0.8, 1.0))
                
            elif fault_mode == "短路":
                # 短路导致电压降低、电流增大
                ua = nominal_voltage / np.sqrt(3) * random.uniform(0.1, 0.4)
                ub = nominal_voltage / np.sqrt(3) * random.uniform(0.1, 0.4)
                uc = nominal_voltage / np.sqrt(3) * random.uniform(0.1, 0.4)
                
                ia = nominal_current * random.uniform(5.0, 10.0)
                ib = nominal_current * random.uniform(5.0, 10.0)
                ic = nominal_current * random.uniform(5.0, 10.0)
                
            else:  # 断线
                # 断线导致部分相电流为零
                broken_phase = random.choice(["A", "B", "C"])
                
                ua = nominal_voltage / np.sqrt(3) * (0 if broken_phase == "A" else random.uniform(0.9, 1.1))
                ub = nominal_voltage / np.sqrt(3) * (0 if broken_phase == "B" else random.uniform(0.9, 1.1))
                uc = nominal_voltage / np.sqrt(3) * (0 if broken_phase == "C" else random.uniform(0.9, 1.1))
                
                ia = nominal_current * (0 if broken_phase == "A" else random.uniform(0.8, 1.0))
                ib = nominal_current * (0 if broken_phase == "B" else random.uniform(0.8, 1.0))
                ic = nominal_current * (0 if broken_phase == "C" else random.uniform(0.8, 1.0))
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            i0 = (ia + ib + ic) * random.uniform(0.2, 0.6)
            
        elif fault_type["二级分类"] == "冰雪灾害":
            # 冰雪灾害:可能导致断线或负载不平衡
            fault_mode = random.choice(["断线", "负载不平衡"])
            
            if fault_mode == "断线":
                # 断线导致部分相电流为零
                broken_phase = random.choice(["A", "B", "C"])
                
                ua = nominal_voltage / np.sqrt(3) * (0 if broken_phase == "A" else random.uniform(0.9, 1.1))
                ub = nominal_voltage / np.sqrt(3) * (0 if broken_phase == "B" else random.uniform(0.9, 1.1))
                uc = nominal_voltage / np.sqrt(3) * (0 if broken_phase == "C" else random.uniform(0.9, 1.1))
                
                ia = nominal_current * (0 if broken_phase == "A" else random.uniform(0.8, 1.0))
                ib = nominal_current * (0 if broken_phase == "B" else random.uniform(0.8, 1.0))
                ic = nominal_current * (0 if broken_phase == "C" else random.uniform(0.8, 1.0))
                
            else:  # 负载不平衡
                # 负载不平衡导致电流不平衡
                ua = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
                ub = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
                uc = nominal_voltage / np.sqrt(3) * random.uniform(0.9, 1.1)
                
                ia = nominal_current * random.uniform(0.5, 1.5)
                ib = nominal_current * random.uniform(0.5, 1.5)
                ic = nominal_current * random.uniform(0.5, 1.5)
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            i0 = (ia + ib + ic) * random.uniform(0.2, 0.5)
            
        elif fault_type["二级分类"] == "外力破坏":
            # 外力破坏:可能导致断线、短路等
            fault_mode = random.choice(["断线", "短路", "绝缘损坏"])
            
            if fault_mode == "断线":
                # 断线导致部分相电流为零
                broken_phase = random.choice(["A", "B", "C"])
                
                ua = nominal_voltage / np.sqrt(3) * (0 if broken_phase == "A" else random.uniform(0.9, 1.1))
                ub = nominal_voltage / np.sqrt(3) * (0 if broken_phase == "B" else random.uniform(0.9, 1.1))
                uc = nominal_voltage / np.sqrt(3) * (0 if broken_phase == "C" else random.uniform(0.9, 1.1))
                
                ia = nominal_current * (0 if broken_phase == "A" else random.uniform(0.8, 1.0))
                ib = nominal_current * (0 if broken_phase == "B" else random.uniform(0.8, 1.0))
                ic = nominal_current * (0 if broken_phase == "C" else random.uniform(0.8, 1.0))
                
            elif fault_mode == "短路":
                # 短路导致电压降低、电流增大
                affected_phases = random.sample(["A", "B", "C"], random.choice([2, 3]))
                
                ua = nominal_voltage / np.sqrt(3) * (random.uniform(0.1, 0.3) if "A" in affected_phases else random.uniform(0.9, 1.1))
                ub = nominal_voltage / np.sqrt(3) * (random.uniform(0.1, 0.3) if "B" in affected_phases else random.uniform(0.9, 1.1))
                uc = nominal_voltage / np.sqrt(3) * (random.uniform(0.1, 0.3) if "C" in affected_phases else random.uniform(0.9, 1.1))
                
                ia = nominal_current * (random.uniform(5.0, 10.0) if "A" in affected_phases else random.uniform(0.8, 1.0))
                ib = nominal_current * (random.uniform(5.0, 10.0) if "B" in affected_phases else random.uniform(0.8, 1.0))
                ic = nominal_current * (random.uniform(5.0, 10.0) if "C" in affected_phases else random.uniform(0.8, 1.0))
                
            else:  # 绝缘损坏
                # 绝缘损坏可能导致接地
                affected_phase = random.choice(["A", "B", "C"])
                
                ua = nominal_voltage / np.sqrt(3) * (random.uniform(0.3, 0.7) if affected_phase == "A" else random.uniform(0.9, 1.1))
                ub = nominal_voltage / np.sqrt(3) * (random.uniform(0.3, 0.7) if affected_phase == "B" else random.uniform(0.9, 1.1))
                uc = nominal_voltage / np.sqrt(3) * (random.uniform(0.3, 0.7) if affected_phase == "C" else random.uniform(0.9, 1.1))
                
                ia = nominal_current * (random.uniform(1.2, 2.0) if affected_phase == "A" else random.uniform(0.8, 1.0))
                ib = nominal_current * (random.uniform(1.2, 2.0) if affected_phase == "B" else random.uniform(0.8, 1.0))
                ic = nominal_current * (random.uniform(1.2, 2.0) if affected_phase == "C" else random.uniform(0.8, 1.0))
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            i0 = (ia + ib + ic) * random.uniform(0.2, 0.6)
            
        else:  # 动物侵害
            # 动物侵害:可能导致相间短路或接地
            fault_mode = random.choice(["相间短路", "接地"])
            
            if fault_mode == "相间短路":
                # 相间短路
                affected_phases = random.sample(["A", "B", "C"], 2)
                
                ua = nominal_voltage / np.sqrt(3) * (random.uniform(0.3, 0.7) if "A" in affected_phases else random.uniform(0.9, 1.1))
                ub = nominal_voltage / np.sqrt(3) * (random.uniform(0.3, 0.7) if "B" in affected_phases else random.uniform(0.9, 1.1))
                uc = nominal_voltage / np.sqrt(3) * (random.uniform(0.3, 0.7) if "C" in affected_phases else random.uniform(0.9, 1.1))
                
                ia = nominal_current * (random.uniform(2.0, 5.0) if "A" in affected_phases else random.uniform(0.8, 1.0))
                ib = nominal_current * (random.uniform(2.0, 5.0) if "B" in affected_phases else random.uniform(0.8, 1.0))
                ic = nominal_current * (random.uniform(2.0, 5.0) if "C" in affected_phases else random.uniform(0.8, 1.0))
                
            else:  # 接地
                # 接地故障
                affected_phase = random.choice(["A", "B", "C"])
                
                ua = nominal_voltage / np.sqrt(3) * (random.uniform(0.1, 0.5) if affected_phase == "A" else random.uniform(1.1, 1.3))
                ub = nominal_voltage / np.sqrt(3) * (random.uniform(0.1, 0.5) if affected_phase == "B" else random.uniform(1.1, 1.3))
                uc = nominal_voltage / np.sqrt(3) * (random.uniform(0.1, 0.5) if affected_phase == "C" else random.uniform(1.1, 1.3))
                
                ia = nominal_current * (random.uniform(1.2, 2.5) if affected_phase == "A" else random.uniform(0.8, 1.0))
                ib = nominal_current * (random.uniform(1.2, 2.5) if affected_phase == "B" else random.uniform(0.8, 1.0))
                ic = nominal_current * (random.uniform(1.2, 2.5) if affected_phase == "C" else random.uniform(0.8, 1.0))
            
            uab = abs(ua - ub)
            ubc = abs(ub - uc)
            uca = abs(uc - ua)
            
            i0 = (ia + ib + ic) * random.uniform(0.3, 0.7)
        
        # 计算功率
        power_factor = random.uniform(0.65, 0.85)  # 环境因素故障下功率因数可能较差
        active_power_a = ua * ia * power_factor
        active_power_b = ub * ib * power_factor
        active_power_c = uc * ic * power_factor
        active_power_total = active_power_a + active_power_b + active_power_c
        
        apparent_power_a = ua * ia
        apparent_power_b = ub * ib
        apparent_power_c = uc * ic
        apparent_power_total = apparent_power_a + apparent_power_b + apparent_power_c
        
        reactive_power_a = apparent_power_a * np.sin(np.arccos(power_factor))
        reactive_power_b = apparent_power_b * np.sin(np.arccos(power_factor))
        reactive_power_c = apparent_power_c * np.sin(np.arccos(power_factor))
        reactive_power_total = reactive_power_a + reactive_power_b + reactive_power_c
        
        sample = {
            "UAB": uab, "UBC": ubc, "UCA": uca,
            "UA": ua, "UB": ub, "UC": uc,
            "IA": ia, "IB": ib, "IC": ic, "I0": i0,
            "有功功率": active_power_total,
            "A相有功功率": active_power_a, "B相有功功率": active_power_b, "C相有功功率": active_power_c,
            "无功功率": reactive_power_total,
            "A相无功功率": reactive_power_a, "B相无功功率": reactive_power_b, "C相无功功率": reactive_power_c,
            "视在功率": apparent_power_total,
            "A相视在功率": apparent_power_a, "B相视在功率": apparent_power_b, "C相视在功率": apparent_power_c,
            "故障类型": fault_type["二级分类"],
            "一级分类": fault_type["一级分类"],
            "二级分类": fault_type["二级分类"]
        }
        data.append(sample)
    
    return data

def add_noise_to_data(data_list, noise_level=0.05):
    """向数据中添加随机噪声"""
    noisy_data = []
    for sample in data_list:
        noisy_sample = {}
        for key, value in sample.items():
            if key in ["故障类型", "一级分类", "二级分类"]:
                noisy_sample[key] = value
            else:
                # 添加随机噪声,噪声水平为原值的noise_level比例
                noise = value * random.uniform(-noise_level, noise_level)
                noisy_sample[key] = value + noise
        noisy_data.append(noisy_sample)
    return noisy_data

def generate_all_fault_data(samples_per_category=200, noise_level=0.05):
    """生成所有类型的故障数据并添加噪声"""
    normal_data = generate_normal_data(samples_per_category)
    short_circuit_data = generate_short_circuit_data(samples_per_category)
    ground_fault_data = generate_ground_fault_data(samples_per_category)
    voltage_loss_data = generate_voltage_loss_data(samples_per_category)
    overload_data = generate_overload_data(samples_per_category)
    open_circuit_data = generate_open_circuit_data(samples_per_category)
    equipment_fault_data = generate_equipment_fault_data(samples_per_category)
    environmental_fault_data = generate_environmental_fault_data(samples_per_category)
    
    all_data = (normal_data + short_circuit_data + ground_fault_data + 
                voltage_loss_data + overload_data + open_circuit_data + 
                equipment_fault_data + environmental_fault_data)
    
    # 添加随机噪声
    noisy_data = add_noise_to_data(all_data, noise_level)
    
    # 随机打乱数据
    random.shuffle(noisy_data)
    
    return noisy_data

def save_to_csv(data_list, filename):
    """将数据保存为CSV文件"""
    df = pd.DataFrame(data_list)
    df.to_csv(filename, index=False, encoding='utf-8')
    print(f"数据已保存至 {filename},共 {len(data_list)} 条记录。")

def split_train_test_data(data_list, test_ratio=0.2):
    """将数据分为训练集和测试集"""
    random.shuffle(data_list)
    split_idx = int(len(data_list) * (1 - test_ratio))
    train_data = data_list[:split_idx]
    test_data = data_list[split_idx:]
    return train_data, test_data

def main():
    print("开始生成电网故障数据...")
    
    # 设置随机种子以便结果可复现
    random.seed(42)
    np.random.seed(42)
    
    # 每种故障类型生成的样本数
    samples_per_category = 200
    
    # 生成所有故障数据并添加噪声
    all_data = generate_all_fault_data(samples_per_category, noise_level=0.03)
    
    # 分割训练集和测试集
    train_data, test_data = split_train_test_data(all_data, test_ratio=0.2)
    
    # 保存数据
    save_to_csv(train_data, "电网故障训练数据.csv")
    save_to_csv(test_data, "电网故障测试数据.csv")
    
    # 计算并打印各类故障的分布情况
    fault_types = {}
    for sample in all_data:
        fault_type = sample["二级分类"]
        if fault_type in fault_types:
            fault_types[fault_type] += 1
        else:
            fault_types[fault_type] = 1
    
    print("\n故障类型分布:")
    for fault_type, count in fault_types.items():
        print(f"{fault_type}: {count}条记录 ({count/len(all_data)*100:.2f}%)")

if __name__ == "__main__":
    main()

这个脚本为电网配网设备故障分类问题生成了模拟训练数据,具体包括以下功能:

  1. 基于您提供的故障分类表,针对每种故障类型生成了特征明显的样本数据

  2. 生成的数据包括三相电压、电流和功率等特征,以及对应的故障分类标签

  3. 模拟了各类故障的电气特性,例如:

    • 短路故障:电流突增,电压骤降
    • 接地故障:零序电流增大,接地相电压降低
    • 失压故障:电压降低或消失
    • 过载故障:电流超过额定值
    • 断路故障:电流中断
    • 设备故障:不同设备的特性故障
    • 环境因素引起的故障:雷击、污秽、风灾等
  4. 为数据添加随机噪声,使其更接近真实情况

  5. 将数据分为训练集和测试集,并保存为CSV文件

使用方法:

  1. 复制脚本到Python环境
  2. 运行脚本即可生成"电网故障训练数据.csv"和"电网故障测试数据.csv"两个数据文件
  3. 这些数据可以直接用于训练机器学习模型,用来识别和分类电网故障

您可以根据需要调整samples_per_category参数来生成更多或更少的样本数据,也可以调整noise_level参数来控制噪声水平。